Characterization of CCNE1 amplifications and associated genomic features in ovarian and uterine cancers

1 Repare Therapeutics, Cambridge, MA, USA; 2 Memorial Sloan Kettering Cancer Center, New York, NY, USA; 3 Authors contributed equally

REPARE THERAPEUTICS

Clinical relevance of CCNE1

Cyclin E1 protein encoded by the CCNE1 gene is a core component of cell cycle in normal cells. In conjunction with Cyclin Dependent Kinase 2 (CDK2), it promotes G1/S transition through phosphorylation of specific substrates. Cyclin E plays an important role in cell cycle progression and DNA replication. Oncogenic activation of the Cyclin E/CDK2 complex mediated by CCNE1 amplification causes replication stress and DNA damage leading to genomic instability and contributing to carcinogenesis^[1]. Cyclin E is not a canonically druggable target, therefore therapeutic approaches to selectively target CCNE1-amplified tumors are being pursued by inhibiting its close interaction partners such as CDK2, WEE1, and PKMYT1^[2]. Clinical success of these therapeutic strategies would benefit from a thorough understanding of how DNA damage and replication stress caused by CCNE1 amplification alters the genomic landscape of tumors.

RP-6306 is a first-in-class, highly potent and selective PKMYT1 inhibitor investigated in clinical trials as a single agent currently being (NCT04855656) in combination with other agents including; and (NCT05147272), (NCT05147350), or irinotecan gemcitabine (NCT04855656), in patients with solid tumors harboring camonsertib CCNE1 amplification^[2]. In pre-clinical models, correlation between CCNE1 copy number, cyclin E1 expression and sensitivity to PKMYT1 inhibition is imperfect. Thus, a deep understanding of genomic changes associated with CCNE1 amplification is critical for strengthening our understanding of the mechanism of action. These learnings will be applied to clinical trials evaluating RP-6306.

Methods

In this study, we used whole exome sequencing (WES) data from TCGA and whole genome sequencing (WGS) data from the PCAWG consortium to describe the genomic landscape of CCNE1-amplified ovarian and uterine tumors (endometrial carcinoma and uterine carcinosarcoma). Our analysis included 361 ovarian and 580 uterine cancer exomes, and 113 ovarian and 51 uterine cancer genomes. Copy Number (CN) calls were made by ASCAT for WES (TCGA), and the Hartwig Medical Foundation pipeline for WGS (PCAWG)^[3]. Tumors were considered as having a CCNE1 amplification if (CN – Tumor Ploidy) >= 4. Structural variant (SV) signature enrichment values were used as reported in the publication by Degasperi et al^[4]. Fold back inversion calls were made by the Hartwig pipeline, and all chromosome level plots were reviewed manually for evidence of breakage fusion bridge.

Sunantha Sethuraman^{1,3}, Dominik Glodzik^{1,3}, Pier Selenica², Adrienne Johnson¹, Jorge S. Reis-Filho², Artur Veloso¹, Ian M. Silverman¹

CCNE1 amplification is a recurrent genomic alteration in ovarian and uterine tumors. CCNE1 is amplified in about 18-20% of ovarian tumors and 8-10% of uterine tumors. In CCNE1-amplified tumors from TCGA, CN values ranged from 6 to 37 copies in ovarian tumors (median = 11.3), and 6 to 42 in uterine tumors (median = 9.7).

Co-mutation landscape of CCNE1 amplifications

Red dots signify statistical significance by Fisher's exact test. All significant hits for ovarian cancer are shown below (left). Most prevalent significant hits (>= 90 patients) is shown below for uterine cancer (right)

Gene	CCNE1 only	Gene only	Both	Neither	Gene	CCNE1 only	Gene only	Both	Neither
TP53	2	191	46	27	ARID1A	48	208	0	306
TOP2A	46	2	2	216	PIK3CA	40	223	8	291
KDM5C	46	1	2	217	PTEN	46	309	2	205
CREBBP	46	1	2	217	CTCF	48	98	0	416
BRCA1	47	39	1	179	CTNNB1	48	96	0	418
ANGPT2	46	1	2	217	TP53	5	185	43	329

A review of the co-mutation landscape using WES revealed that TP53 mutations frequently co-occurred with CCNE1 amplifications in both ovarian and uterine tumors (ovarian: 95.8% vs 87.6%, OR = 3.24, p=0.1; uterine: 89.6% vs 36.0%, OR = 15.2, p =2.14e-13) and *BRCA1* mutations were mutually exclusive with CCNE1 amplifications in ovarian tumors (2.1% vs 17.9%, OR=0.2, p = 3.1e-3). In addition, mutations in ARID1A (0% vs. 40.5%, OR = 0, p = 1.3e-10) and *PTEN* (4.2% vs 60.1%, OR = 0.03, p =2.7e-15) were mutually exclusive with CCNE1 amplifications in uterine tumors.

WGD in tumors with CCNE1 amplification

Whole genome duplication (WGD) is a common genetic abnormality that occurs in about 30% of cancers and is associated with genome instability. WGD was detected significantly more frequently in ovarian and uterine tumors with CCNE1 amplification as compared to non-amplified tumors (ovarian: 90.9% vs 48.3%, p = 6.4e-10; uterine: 78.7% vs 21.9%, p = 7.1e-

Distinct SV signatures in CCNE1-amplified tumors

Widespread chromosomal genomic rearrangement is a hallmark of many cancers, especially cancers with high DNA replication stress and genome instability. CCNE1-amplified ovarian and uterine cancers were found to display an enrichment for certain SV signatures: RS1, dominated by nonclustered 100Kb-1Mb duplications (median = 30, p=0.03); RS2, dominated by non-clustered translocations (median = 16, p=0.005); and RS7, dominated by non-clustered 100Kb-1Mb deletions (median=20, p=0.002).

Evidence for BFB cycle in CCNE1 amplification

Breakage fusion bridge (BFB) mechanism of cycle İS а chromosomal instability that leads to progressive tandem duplication chromosomal eventual segments and amplification of genes in those segments^[5]. Certain genomic as foldcharacteristics such (FBI) and back inversions segment copy number patterns suggest the occurrence of BFB.

FBIs were enriched in the CCNE1 locus in patients with CCNE1 amplification. We classified CCNE1 amplifications as having evidence for BFB based on the presence of FBI and LOH of either chromosome arm beyond the amplification segment. Approximately 21% of cases had a strong evidence for BFB. Another 17% of patients showed signs of BFB after WGD. In many cases, the locus had more complex rearrangement architecture such as chromothripsis.

Conclusions

- CCNE1 amplification leads to genome instability in ovarian and uterine cancer patients
- TP53 loss frequently co-occurs with CCNE1 amplification in ovarian and uterine cancers. BRCA1 alterations are mutually exclusive with CCNE1 amplifications in ovarian cancer. *PTEN* and *ARID1A* mutations are mutually exclusive with CCNE1 amplifications in uterine cancer.
- WGD, FBIs, and specific SV signatures such as large tandem duplications, deletions and translocations are enriched in the tumors with CCNE1 amplification.
- There is evidence for breakage fusion bridge being the mechanism of CCNE1 amplification in about 38% of patients.

References

- 1. Chu, C. et al. Cyclin E in normal physiology and disease states, Trends in Cell Biology, ISSN: 0962-8924, Vol: 31, Issue: 9, Page: 732-746
- 2. Gallo, D. *et al.* CCNE1 amplification is synthetic lethal with PKMYT1 kinase inhibition. Nature 604, 749–756 (2022) 3. Martínez-Jiménez, F. et al. Pan-cancer whole genome comparison of primary and metastatic solid tumors,
- bioRxiv 2022.06.17.496528. https://dcc.icgc.org/releases/PCAWG/Hartwig
- 4. Degasperi, A. et al. A practical framework and online tool for mutational signature analyses show intertissue variation and driver dependencies. Nat Cancer 1, 249–263 (2020)
- 5. Bhargava, R. et al. Genome rearrangements associated aberrant telomere maintenance, Current Opinion in Genetics & Development, Vol 60, Feb 2020, Pages 31-40.
- 6. Valle-Inclán J.E. et al. ReConPlot an R package for the visualization and interpretation of genomic rearrangements, bioRxiv 2023.02.24.529890