

other Repare ANE presentations

#### Ezra Rosen<sup>1</sup>, Timothy A. Yap<sup>2</sup>, Elisa Fontana<sup>3</sup>, Elizabeth K. Lee<sup>4</sup>, Devalingam Mahalingam<sup>5</sup>, Martin Højgaard<sup>6</sup>, Niharika B. Mettu<sup>7</sup>, Gregory M. Cote<sup>8</sup>, Ruth Plummer<sup>9</sup>, Ian M. Silverman<sup>10</sup>, Julia Yang<sup>10</sup>, Maria Koehler<sup>10</sup>, Anne Roulston<sup>11</sup>, Li Li<sup>11</sup>, Michal Zimmermann<sup>11</sup>, Benedito A. Carneiro<sup>12</sup>, Stephanie Lheureux<sup>13</sup>

<sup>1</sup>Medical Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; <sup>2</sup>Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; <sup>3</sup>Sarah Cannon Research Institute, Boston, MA, USA; <sup>5</sup>Northwestern University, Chicago, IL, USA; <sup>6</sup>University Hospital of Copenhagen, Copenhagen, Copenhagen, Denmark; <sup>7</sup>Duke University, Medical Oncology, Durham, NC, USA; <sup>8</sup>Mass General Cancer Center, Boston, MA, USA; <sup>9</sup>Sir Bobby Robson Cancer Trials Research Centre, Freeman Hospital, Newcastle upon Tyne, UK; <sup>10</sup>Repare Therapeutics, St-Laurent, QC, Canada; <sup>12</sup>Legorreta Cancer Center at Brown University, and Lifespan Cancer Institute, The Warren Alpert Medical School, Brown University, Providence, RI, USA; <sup>13</sup>Princess Margaret Cancer Centre, Toronto, ON, Canada

All patients (N=64)

29 (45)

8 (13)

6 (9)

4 (6)

3 (5)

3 (5)

2 (3)

2 (3)

7 (11)

23 (36)

17 (27)

14 (22)

2 (3)

2 (3)

2 (3)

4 (6)



### Figure 1. Preclinical data demonstrate combination synergy at low doses of cam and gem



In vitro, low doses of cam ( $\leq IC_{50}$ ) and gem strongly synergize to kill tumor cells with ZIP synergy scores of > 40



In vivo, cam (1/3 MTD) combined with low dose gem (1/10-1/20 MTD) results in tumor regression. No impact on body weight was observed (data not shown).

### Inclusion criteria:

- Patients ≥ 18y with advanced solid tumors
- Tumors with deleterious somatic or germline gene alterations
- ATM, ATRIP, BRCA1/2, CDK12, CHTF8, FZR1. MRE11. NBN. PALB2. RAD51B/C/D, RNASEH2A/B, RAD17, REV3L, RAD50, SETD2
- ECOG PS 0 or 1
- Hemoglobin ≥ 10 g/dL
- Platelets ≥ 140,000/µl
- Absolute neutrophil count ≥ 1,700/µL
- Prior gemcitabine permitted

# Methods

- **Camonsertib monotherapy**<sup>1</sup> Preliminary RP2D: 160 mg QD (3/4)
- Camonsertib with gemcitabine 64 patients treated 52/64 patients evaluated for
- response ( $\geq$  1 post-baseline scan)



#### Objectives and key endpoints:

- Safety and tolerability; RP2D and schedule
- Response: response evaluation in solid tumors (RECIST v1.1), confirmed PSA (PCWG3 criteria) or CA-125 response (GCIG criteria)
- Clinical benefit: response or treatment duration  $\geq$  16 w without progression
- Camonsertib pharmacokinetics
- Genomic analysis and ctDNA molecular response (MR) (≥ 50% decline in methylation-based TF)<sup>2</sup>

# Camonsertib (RP-3500), an ataxia telangiectasia- and Rad3-related kinase inhibitor (ATRi) in combination with low dose gemcitabine (gem) in patients with solid tumors with DNA damage response (DDR) aberrations: Preclinical and Phase 1b results (NCT04497116)

## Results

Parameter

Ovarian

Pancreatic

Colorectal

Prostate

Endometrial

Genotypes, n (%)

Lung

Liver

Other<sup>a</sup>

BRCA1

BRCA2

ATM

PALB2

CDK12

SETD2

Other<sup>b</sup>

Breast

Tumor types, n (%)

#### Table 1. Patient demographics

| Parameter                                                                                                      | All pat                                                                           | All patients (N=64)                                                                |  |  |  |
|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--|--|--|
| <b>Age (years)</b><br>Median (IQR)                                                                             | 61                                                                                | 61 (55–69)                                                                         |  |  |  |
| <b>Sex, n (%)</b><br>Male<br>Female                                                                            |                                                                                   | 15 (23)<br>49 (77)                                                                 |  |  |  |
| <b>ECOG PS, n (%)</b><br>0<br>1                                                                                |                                                                                   | 26 (41)<br>38 (59)                                                                 |  |  |  |
| Prior systemic therapies<br>Median (IQR)<br>≥ 3, n (%)<br>PARPi, n (%)<br>Platinum, n (%)<br>Gemcitabine, n(%) | All patients (N=64)<br><b>3 (2–4)</b><br>39 (61)<br>37 (58)<br>55 (86)<br>12 (19) | Ovarian Cancer (N=29)<br><b>3 (2–4)</b><br>20 (69)<br>23 (79)<br>28 (97)<br>8 (28) |  |  |  |

<sup>a</sup>Other tumor types included cervical (n=1), gastrointestinal (n=1), head and neck (n=1), kidney (n=1), ampullary (n=1), mesothelioma (n=1), and uterine carcinosarcoma (n=1). <sup>b</sup>Other genotypes included RAD50 (n=1), RAD51B n=1), RAD51C (n=1), and MRE11A (n=1),

#### Figure 2. Comprehensive dose and schedule finding





### Treatment-related adverse events and neutrophil dynamics

#### Table 2. Treatment-related adverse events (TRAEs)

|                    | Arm 1 N=37 Arm |      |      | n 2 N=27   |      |      |
|--------------------|----------------|------|------|------------|------|------|
| AE term, %         | All grades     | Gr 3 | Gr 4 | All grades | Gr 3 | Gr 4 |
| Neutropenia        | 62             | 30   | 27   | 56         | 33   | 7    |
| Fatigue            | 49             | 3    | 0    | 63         | 7    | 0    |
| Anemia             | 49             | 22   | 0    | 56         | 22   | 0    |
| Alopecia           | 43             | 0    | 0    | 44         | 0    | 0    |
| Nausea             | 38             | 0    | 0    | 41         | 0    | 0    |
| Thrombocytopenia   | 35             | 8    | 0    | 41         | 19   | 4    |
| Pyrexia            | 38             | 0    | 0    | 15         | 0    | 0    |
| Vomiting           | 27             | 0    | 0    | 30         | 0    | 0    |
| Leukopenia         | 30             | 19   | 0    | 26         | 11   | 0    |
| Stomatitis         | 30             | 5    | 0    | 11         | 4    | 0    |
| Chills             | 24             | 0    | 0    | 15         | 0    | 0    |
| Decreased appetite | 14             | 0    | 0    | 19         | 0    | 0    |
| Headache           | 16             | 0    | 0    | 15         | 0    | 0    |

TRAE of all grades that occurred in  $\geq$  15% of patients treated. Most frequent dose-limiting toxicities: neutropenia/anemia (Arm 1); neutropenia (Arm 2).

Neutropenia, the most frequent TRAE across dose levels, was transient and occurred in the absence of fever, typically with spontaneous recovery.

Figure 3. Neutrophil dynamics: 21d vs 28d cycle (representative examples)

A. Gem 400-1000 mg/m<sup>2</sup>; B. Proposed RP2D; 21d cycle 28d cycle - Pt1 - Pt2 🔶 Pt1 🔶 Pt2 dose wk off wk off wk off



At proposed RP2D/schedule neutrophil nadir occurred during planned week off, with recovery by next scheduled dose, resulting in fewer dose interruptions/reductions.

- Arm 1, 21d cycle: 72% (13/18) of patients had a dose interruption and/or reduction due to neutropenia.
- Proposed RP2D, 28d cycle: no patients had a dose interruption due to neutropenia; 1 patient (6% [1/16]) required a dose reduction due to neutropenia.

| А.       | Tre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ea |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| sy       | ste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | m  |
| Genotype | ATMATATA<br>B ACATA<br>B ACATA<br>B ACCATA<br>B ACCATA<br>B ACCATA<br>B ACCATA<br>B ACCATA<br>B ACCATA<br>B ACCATA<br>B ACCATA<br>B B ACCATA<br>B B ACCATA<br>B B ACCATA<br>B B B B B B B B ACCATA<br>B B B B B ACCATA<br>B B B B B B B B ACCATA<br>B B B B B B B B B ACCATA<br>B B B B B B B B B B B B B B B B B B B |    |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | R  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C  |
|          | Methylation-based ctDNA TF C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -  |
| Т        | umo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | or |



### Poster number: B045

Evaluation Criteria in Solid Tumors; rNMP, ribonucleotide; TF, tumor fraction; TL, target lesion; TRAE, treatment-related adverse event; uPR, unconfirmed partial response; w. week.