

Repare ANE presentations

MYTHIC: First-in-human biomarker-driven phase I trial of first-in-class PKMYT1 inhibitor lunresertib alone and with ATR inhibitor camonsertib in solid tumors with CCNE1 amplification or deleterious alterations in FBXW7 or PPP2R1A

¹Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, New York, NY, USA; ³Medical Oncology, Washington University of Pennsylvania, Philadelphia, PA, USA; ⁵Medical Oncology, Washington University of Pennsylvania, Philadelphia, PA, USA; ⁴University of Pennsylvania, Philadelphia, PA, USA; ⁵Medical Oncology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA; ⁶Medical Oncology, Yale Cancer Center, New Haven, CT, USA; ⁹Medical Oncology, Copenhagen, Denmark; ⁸Legorreta Cancer Center, New Haven, CT, USA; ⁹Medical Oncology, Columbia University Irving Medical Center, New York, NY, USA; ¹⁰Phase 1 Program, University of Utah School of Medicine, Salt Lake City, UT, USA; ¹¹Repare Therapeutics, Cambridge, MA, USA; ¹²Princess Margaret Cancer Centre, Toronto, ON, Canada; *Former employee of Repare Therapeutics

- Cyclin E1 overexpression (O/E) drives premature S-phase entry and overloads the DNA replication machinery, resulting in genome instability; with no approved therapies, this is an area of high unmet need in the clinic
- Lunresertib (RP-6306) is a first-in-class inhibitor of the membrane-associated tyrosine- and to premature mitosis and catastrophic DNA damage in the context of Cyclin E1 O/E
- Additionally, PKMYT1 inhibition was identified to be synthetic lethal (SL) with FBXW7 and *PPP2R1A* in chemical genomic screens^{1,2}
- Camonsertib, a potent ATRi with demonstrated clinical activity, is SL with genomic alterations affecting the DNA damage response distinct from those leading to lunresertib sensitivity^{3,4}
- premature mitosis in the context of lunresertib-sensitizing genomic alterations
- anti-tumor activity of the first-in-class PKMYT1 inhibitor lunresertib alone and in combination with camonsertib

Sethuraman¹¹, Snehal Dhake¹¹, Yajun Liu¹¹, Adrian J. Fretland¹¹, Xizi Sun¹¹, Yi Xu¹¹, Nathan Hawkey¹¹, Jen Truong^{11*}, Stephanie Lheureux¹²

<u>Timothy A. Yap</u>¹, Alison Schram², Elizabeth K. Lee³, Fiona Simpkins⁴, Mia C. Weiss⁵, Patricia LoRusso⁶, Martin Hojgaard⁷, Benedito A. Carneiro⁸, Ryan H. Moy⁹, Ignacio Garrido-Laguna¹⁰, Maria Koehler¹¹, T.J. Unger¹¹, Emeline S Bacqué¹¹, Elia Aguado-Fraile¹¹, Sunantha

